AP Calculus AB Course and Exam Description AP Calculus AB and AP Calculus BC focus on students' understanding of calculus concepts and provide experience with methods and applications. Through the use of big ideas of calculus (e.g., modeling change, approximation and limits, and analysis of functions), each course becomes a cohesive whole, rather than a collection of unrelated topics. Both courses require students to use definitions and theorems to build arguments and justify conclusions. The courses feature a multi-representational approach to calculus, with concepts, results, and problems expressed graphically, numerically, analytically, and verbally. Exploring connections among these representations builds understanding of how calculus applies limits to develop important ideas, definitions, formulas, and theorems. A sustained emphasis on clear communication of methods, reasoning, justifications, and conclusions is essential. Teachers and students should regularly use technology to reinforce relationships among functions, to confirm written work, to implement experimentation, and to assist in interpreting results. AP Calculus AB is designed to be the equivalent of a first semester college calculus course devoted to topics in differential and integral calculus. ## **RECOMMENDED PREREQUISITES** Before studying calculus, all students should complete the equivalent of four years of secondary mathematics designed for college-bound students: courses that should prepare them with a strong foundation in reasoning with algebraic symbols and working with algebraic structures. Prospective calculus students should take courses in which they study algebra, geometry, trigonometry, analytic geometry, and elementary functions. These functions include linear, polynomial, rational, exponential, logarithmic, trigonometric, inverse trigonometric and piecewise-defined functions. In particular, before studying calculus, students must be familiar with the properties of functions, the composition of functions, the algebra of functions, and the graphs of functions. Students must also understand the language of functions (domain and range, odd and even, periodic, symmetry, zeros, intercepts, and descriptors such as increasing and decreasing). Students should also know how the sine and cosine functions are defined from the unit circle and know the values of the trigonometric functions at the numbers $0,\pi/6,\pi/4,\pi/3,\pi/2$, and their multiples. #### AP Calculus AB Course and Exam Content #### **Course Content** The course content is organized into eight commonly taught units, which have been arranged in the following suggested, logical sequence: - Unit 1: Limits and Continuity - Unit 2: Differentiation: Definition and Fundamental Properties - Unit 3: Differentiation: Composite, Implicit, and Inverse Functions - Unit 4: Contextual Applications of Differentiation - Unit 5: Analytical Applications of Differentiation - Unit 6: Integration and Accumulation of Change - Unit 7: Differential Equations - Unit 8: Applications of Integration #### Big Ideas The following big ideas serve as the foundation of the course, enabling students to create meaningful connections among concepts and develop deeper conceptual understanding: - Change: Using derivatives to describe rates of change of one variable with respect to another or using definite integrals to describe the net change in one variable over an interval of another allows students to understand change in a variety of contexts. - Limits: Beginning with a discrete model and then considering the consequences of a limiting case allows us to model real-world behavior and to discover and understand important ideas, definitions, formulas, and theorems in calculus. - Analysis of Functions: Calculus allows us to analyze the behaviors of functions by relating limits to differentiation, integration, and infinite series and relating each of these concepts to the others | AP (| AP Calculus AB course and exam | | | |------|---------------------------------------------------------|--|--| | | UNIT 1 LIMITS AND CONTINUITY | | | | 1.1 | Introducing Calculus: | | | | | Can Change Occur at an Instant? | | | | 1.2 | Defining Limits and Using Limit Notation | | | | 1.3 | Estimating Limit Values from Graphs | | | | 1.4 | Estimating Limit Values from Tables | | | | 1.5 | Determining Limits Using Algebraic Properties of Limits | | | | 1.6 | Determining Limits Using Algebraic Manipulation | | | | 1.7 | Selecting Procedures for Determining Limits | | | | 1.8 | Determining Limits Using the Squeeze Theorem | | | | 1.9 | Connecting Multiple Representations of Limits | |------|------------------------------------------------------------------------------------------------| | 1.10 | Exploring Types of Discontinuities | | 1.11 | Defining Continuity at a Point | | 1.12 | Confirming Continuity over an Interval | | 1.13 | Removing Discontinuities | | 1.14 | Connecting Infinite Limits and Vertical Asymptotes | | 1.15 | Connecting Limits at Infinity and Horizontal Asymptotes | | 1.16 | Working with the Intermediate Value Theorem (IVT) | | | UNIT 2 DIFFERENTIATION: DEFINITION AND BASIC DERIVATIVE RULES | | 2.1 | Defining Average and Instantaneous Rates of Change at a Point | | 2.2 | Defining the Derivative of a Function and Using Derivative Notation | | 2.3 | Estimating Derivatives of a Function at a Point | | 2.4 | Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist | | 2.5 | Applying the Power Rule | | 2.6 | Derivative Rules: Constant, Sum, Difference, and Constant Multiple | | 2.7 | Derivatives of cos x, sin x, e ^x and ln x | | 2.8 | The Product Rule | | 2.9 | The Quotient Rule | | 2.10 | Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions | | | UNIT 3 DIFFERENTIATION: COMPOSITE, IMPLICIT, AND INVERSE | |----------|----------------------------------------------------------------------------| | | FUNCTIONS | | 3.1 | The Chain Rule | | 3.2 | Implicit Differentiation | | 3.3 | Differentiating Inverse Functions | | 3.4 | Differentiating Inverse Trigonometric Functions | | 3.5 | Selecting Procedures for Calculating Derivatives | | 3.6 | Calculating Higher-Order Derivatives | | | UNIT 4 CONTEXTUAL APPLICATIONS OF DIFFERENTIATION | | 4.1 | Interpreting the Meaning of the Derivative in Context | | 4.2 | Straight-Line Motion: Connecting Position, Velocity, and Acceleration | | 4.3 | Rates of Change in Applied Contexts Other Than Motion | | 4.4 | Introduction to Related Rates | | 4.5 | Solving Related Rates Problems | | 4.6 | Approximating Values of a Function Using Local Linearity and Linearization | | 4.7 | Using L'Hospital's Rule for Determining Limits of Indeterminate Forms | | | UNIT 5 ANALYTICAL APPLICATIONS OF DIFFERENTIATION | | 5.1 | Using the Mean Value Theorem | | 5.2 | Extreme Value Theorem, Global Versus Local Extrema, and Critical Points | | 5.3 | Determining Intervals on Which a Function Is Increasing or Decreasing | | 5.4 | Using the First Derivative Test to Determine Relative (Local) Extrema | | 5.5 | Using the Candidates Test to Determine Absolute (Global) Extrema | | <u> </u> | | | 5.6 | Determining Concavity of Functions over Their Domains | |-------|----------------------------------------------------------------------------| | 5.7 | Using the Second Derivative Test to Determine Extrema | | 5.8 | Sketching Graphs of Functions and Their Derivatives | | 5.9 | Connecting a Function, Its First Derivative, and Its Second Derivative | | 5.10 | Introduction to Optimization Problems | | 5.11 | Solving Optimization Problems | | 5.12 | Exploring Behaviors of Implicit Relations | | OF CH | UNIT 6 INTEGRATION AND ACCUMULATION IANGE | | 6.1 | Exploring Accumulations of Change | | 6.2 | Approximating Areas with Riemanns Sums | | 6.3 | Riemann Sums, Summation Notation, and Definite Integral Notation | | 6.4 | The Fundamental Theorem of Calculus and Accumulation Functions | | 6.5 | Interpreting the Behavior of Accumulation Functions Involving Area | | 6.6 | Applying Properties of Definite Integrals | | 6.7 | The Fundamental Theorem of Calculus and Definite Integrals | | 6.8 | Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation | | 6.9 | Integrating Using Substitution | | 6.10 | Integrating Functions Using Long Division and Completing the Square | | 6.14 | Selecting Techniques for Antidifferentiation | | 7.1 Modeling Situations with Differential Equations 7.2 Verifying Solutions for Differential Equations 7.3 Sketching Slope Fields 7.4 Reasoning Using Slope Fields 7.6 Finding General Solutions Using Separation of Variables 7.7 Finding Particular Solutions Using Initial Conditions and Separation of Variables 7.8 Exponential Models with Differential Equations UNIT 8 APPLICATIONS OF INTEGRATION 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | | UNIT 7 DIFFERENTIAL EQUATIONS | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------| | 7.3 Sketching Slope Fields 7.4 Reasoning Using Slope Fields 7.6 Finding General Solutions Using Separation of Variables 7.7 Finding Particular Solutions Using Initial Conditions and Separation of Variables 7.8 Exponential Models with Differential Equations UNIT 8 APPLICATIONS OF INTEGRATION 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 7.1 | Modeling Situations with Differential Equations | | 7.4 Reasoning Using Slope Fields 7.6 Finding General Solutions Using Separation of Variables 7.7 Finding Particular Solutions Using Initial Conditions and Separation of Variables 7.8 Exponential Models with Differential Equations UNIT 8 APPLICATIONS OF INTEGRATION 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around Other Axes 8.10 Volume with Disc Method: Revolving Around Other Axes | 7.2 | Verifying Solutions for Differential Equations | | 7.6 Finding General Solutions Using Separation of Variables 7.7 Finding Particular Solutions Using Initial Conditions and Separation of Variables 7.8 Exponential Models with Differential Equations UNIT 8 APPLICATIONS OF INTEGRATION 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 7.3 | Sketching Slope Fields | | 7.7 Finding Particular Solutions Using Initial Conditions and Separation of Variables 7.8 Exponential Models with Differential Equations UNIT 8 APPLICATIONS OF INTEGRATION 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 7.4 | Reasoning Using Slope Fields | | 7.8 Exponential Models with Differential Equations UNIT 8 APPLICATIONS OF INTEGRATION 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 7.6 | Finding General Solutions Using Separation of Variables | | UNIT 8 APPLICATIONS OF INTEGRATION 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 7.7 | Finding Particular Solutions Using Initial Conditions and Separation of Variables | | 8.1 Finding the Average Value of a Function on an Interval 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 7.8 | Exponential Models with Differential Equations | | 8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | | UNIT 8 APPLICATIONS OF INTEGRATION | | 8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 8.1 | Finding the Average Value of a Function on an Interval | | 8.4 Finding the Area Between Curves Expressed as Functions of x 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 8.2 | Connecting Position, Velocity, and Acceleration of Functions Using Integrals | | 8.5 Finding the Area Between Curves Expressed as Functions of y 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 8.3 | Using Accumulation Functions and Definite Integrals in Applied Contexts | | 8.6 Finding the Area Between Curves That Intersect at More Than Two Points 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 8.4 | Finding the Area Between Curves Expressed as Functions of x | | 8.7 Volumes with Cross Sections: Squares and Rectangles 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 8.5 | Finding the Area Between Curves Expressed as Functions of y | | 8.8 Volumes with Cross Sections: Triangles and Semicircles 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 8.10 Volume with Disc Method: Revolving Around Other Axes | 8.6 | Finding the Area Between Curves That Intersect at More Than Two Points | | 8.9 Volume with Disc Method: Revolving Around the x- or y-Axis8.10 Volume with Disc Method: Revolving Around Other Axes | 8.7 | Volumes with Cross Sections: Squares and Rectangles | | 8.10 Volume with Disc Method: Revolving Around Other Axes | 8.8 | Volumes with Cross Sections: Triangles and Semicircles | | | 8.9 | Volume with Disc Method: Revolving Around the x- or y-Axis | | | 8.10 | Volume with Disc Method: Revolving Around Other Axes | | 8.11 Volume with Washer Method: Revolving Around the x- or y-Axis | 8.11 | Volume with Washer Method: Revolving Around the x- or y-Axis | | 8.12 Volume with Washer Method: Revolving Around Other Axes | 8.12 | Volume with Washer Method: Revolving Around Other Axes | #### AP CALCULUS AB EXAM: 3 HOURS 15 MINUTES The AP Calculus AB Exam assesses student understanding of the mathematical practices and learning objectives outlined in the course framework. The exam is 3 hours and 15 minutes long and includes 45 multiple-choice questions and 6 free-response questions. #### Další informace: ## AP Calculus AB Course Overview – 2 stránky https://apcentral.collegeboard.org/pdf/ap-calculus-ab-course-overview.pdf?course=ap-calculus-ab # AP Calculus AB Course at a glance - 4 strany https://apcentral.collegeboard.org/pdf/ap-calculus-ab-bc-course-a-glance-0.pdf?course=ap-calculus-ab # AP Calculus AB and BC Course and Exam Description – 256 stran https://apcentral.collegeboard.org/pdf/ap-calculus-ab-bc-course-and-exam-description-0.pdf?course=ap-calculus-ab ## Příklady zkouškových otázek https://apcentral.collegeboard.org/pdf/ap21-frq-calculus-ab.pdf?course=ap-calculus-ab