

Research Infrastructures in the Czech Republic

European Research Area Board

Imperial College, London

John Wood

A Great Opportunity for the Czech Republic!

- The first Member State to use Structural funds for the support of large research infrastructures.
- As such there are many lessons to be learnt and developed as time goes on.
- Large proportion of the funding is coming from a Bank (not a grant!)
- The DG Regions has little experience in supporting world class large research infrastructures

- •Globalisation of research
- •The real impact of e-research
- Increasing requirement to deliver
 "whole" solutions
- •Impact of large research infrastructures
- Remote access
- Virtual Research Environments
- Linking research to innovation

From Green Field to?

A. Sora Doch

Rutherford-Appleton Laboratory

A view over the northeast of Lund stretching from the University Science area via Ideon past Sony Ericsson and on to the Max IV and ESSS site.

JET Culham

The EIROforum

ESA Paris

Inspiring and world leading

EMBL Heidelberg

ILL & ESRF Grenoble

ESO Garching

CERN Geneva

Infrastructures for Fusion Energy

International Fusion Materials Irradiation Facility (IFMIF)

Large-scale e-Infrastructures for Biodiversity Research

Big questions in biodiversity research

A cyber community of infrastructures

CLARIN

Towards an integrated and interoperable research infrastructure of language resources and its technology enabling eHumanities

Easy access to Language Resources and Technology for the Humanities community

scientific data as an infrastructure

new "petaflop" supercomputers

 Pan-European coverage
 (40+ countries /3900 universities / 30+ million students)

European Research Area

Board (ERAB)

- Hybrid architecture:
 - connectivity at 10 Gb/s (aggregated traffic)
 - dark fiber wavelengths (demanding communities)

GÉANT: global reach

06/10/2009

European Research Area

Various types of Infrastructures require differing approaches

- Large one off international projects
- Large dispersed yet physical international/European facilities
- Large European facilities
- Large National facilities
- Large dispersed groups, centrally managed, using e-infrastructure
- All require integrated data management

Some definitions

- A Research Infrastructure is a complex project that has to be delivered on budget and on time.
- It must be based on excellence if it is to be world class
- A RI project is not the same as a research programme.
- There is a need for both scientific leadership and project management leadership. Balancing the two is not easy and the necessary talents are seldom found in one person

Pitfalls in Building Large RIS Lead scientist wants to run everything – leads to

- project drift
- Project manager is insensitive to the research programmes.
- Contingency/inflation is not included in the budget
- Operating/decommissioning costs are forgotten. Operating costs are normally about 10% of initial capital
- Provision for upgrading and refreshing should be included otherwise RI will cease to be world class quickly.
- Not taking procurement seriously
- Not planning the innovation chain from the start

Innovation and Exploitation

• Three essentials:

- Attract the best scientists and allow freedom to explore new ideas.
- Professional management
- Healthy throughput of staff year by year
- Bank of Boston analysis of MIT showed it was the alumni that were the innovation drivers of much of the US economy, not the institution itself recent Area

Cost Benefit Analysis

- This is part of the business case
- It assumes that there is a good science case that has passed review
- Need to convince investors and politicians that it is good value for money and will give some type of economic return
- Economic return is not just spin outs etc.
 Output of trained people is the most important
- The management aspects and control are the main concern of investors at this stage

Who are the Stakeholders?

- In a gateway process the Senior Responsible Owner (the lead person in the proposal) is the chief stakeholder
- The SRO takes the findings of the review (of which CBA is part) as evidence that the project is feasible.
- The SRO gives assurance to funders and other stakeholders. The SRO's reputation is at stake and must not put the case forward if it is not viable
- The funders want to know the outcomes, true costs and risks involved

- Scientists who will work on the RI and help define the specification
- MEYS and other ministries
- Investors EIB and other countries
- Industry
- Local population
- General public especially school students

Good luck!

